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Humans and other animals need to make inferences about their environment under 
constraints of limited time, knowledge, and computational capacities. However, most 
theories of inductive inferences model the human mind as a supercomputer like a 
Laplacean demon, equipped with unlimited time, knowledge, and computational capaci­
ties. In this article I review models of fast and frugal inference, that is, satisficing 
strategies whose task is to infer unknown states of the world (without relying on 
computationaly expensive procedures such as multiple regression). Fast and frugal 
inference is a form of bounded rationality (SIMON, 1982). I begin by explaining what 
bounded rationality in human inference is not. 

1. BOUNDED RATIONALITY IS NOT IRRATIONALITY 

In his chapter in JOHN KAGEL and ALVIN ROTH'S Handbook of Experimental Economics 
(1995), COLIN CAMBRER explains that «most research on individual decision making 
has taken normative theories of judgment and choice (typically probability rules and 
utility theories) as null hypotheses about behavior,» and has labeled systematic devia­
tions from these norms «cognitive illusions» (p. 588). CAMERER continues, «The most 
fruitful, popular alternative theories spring from the idea that limits on computational 
ability force people to use simplified procedures or 'heuristics' that cause systematic 
mistakes (biases) in problem solving, judgment, and choice. The roots of this approach 
are in SIMON'S (1955) distinction between substantive rationality (the result of normative 
maximizing models) and procedural rationality» (p. 588). In the preface to their 
anthology, DANIEL KAHNEMAN, PAUL SLOVIC, and AMOS TVERSKY (1982) relate their 
heuristics-and-biases program to «Simon's treatment of heuristics of reasoning and of 
bounded rationality» (p. xii). RICHARD THALER (1991) explains that KAHNEMAN and 
TVERSKY have shown that «mental illusions should be considered the rule rather than 
the exception. Systematic, predictable differences between normative models of behav­
ior and actual behavior occur because of what HERBERT SIMSON [sic!] (1957, p. 198) 
called <bounded rationality>» (p. 4). 
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My first point is to disentangle the confusion between bounded rationality (or 
procedural rationality) and irrationality inherent in these statements - a confusion which 
has been repeated many times (e.g., OAKSFORD and CHATER, 1992; see LOPES, 1992). I 
use the term «irrationality» as a shorthand for the various «errors» and «fallacies» in 
statistical and probabilistic judgment which CAMERER lists, such as the conjunction 
fallacy, the base rate fallacy, and the overconfidence bias. In each of these alleged 
demonstrations of irrationality, the assumption is made that it is crystal-clear what the 
correct judgment is. Sound reasoning is reduced to applying a simple rule such as the 
conjunction rule or Bayes* rule, without even looking at the content and context of the 
task (GiGERENZER, 1996a; GlGERENZER and MURRAY, 1987). Systematic deviations of 
human judgment from these norms (the «null hypotheses») are called «biases» or 
«errors» and attributed to crude «heuristics» - representativeness, availability, and 
anchoring. What do these «heuristics and biases» have to do with bounded rationality? 

To start with, most of the heuristics and biases in statistical and probabilistic judgment 
that CAMERER lists stem from the anthology by KAHNEMAN et al. (1982), in which, as 
mentioned before, the link to bounded rationality is made in the preface. This anthology 
contains all of TVERSKY and KAHNEMAN'S major papers since the early 1970s, none of 
which has a single citation to SIMON. Given the normal care that TVERSKY and 
KAHNEMAN take in crediting others, it is unlikely that their research actually had its roots 
in SiMON's concept of bounded rationality (LOPES, 1992). This leaves us with the 
possibility that there is, nevertheless, a deep link between the two programs which has 
just gone unnoticed for a decade or so. So let us examine how the heuristics and biases 
actually relate to bounded rationality. 

For that we need some criteria for bounded rationality. To find specific criteria turns 
out to be harder than it seems: initially, the concept of bounded rationality was only 
vaguely defined, and one could «fit a lot of things into it by foresight and hindsight» 
(SIMON, 1992, p. 18). I introduce four general requirements (rather than specific ones 
such as explicit stopping rules, see below), two related to each «blade» of the «scissors» 
that shape bounded rationality: «the structure of task environments and the computa­
tional capabilities of the actor» (SIMON, 1990, p. 7). 
1. The task is too hard to compute an exact solution. In SiMON's (1979) words, 

«Satisficing [is] aiming at the good when the best is incalculable» (p. 3). To use one 
of his favorite examples, «If the game of chess, limited to its 64 squares and six 
kinds of pieces, is beyond exact computation, then we may expect the same of almost 
any real-world problem...» (SIMON, 1990, p. 6). There are two readings of the term 
«incalculable.» First, the task is too hard for the computational power humankind 
has available today, in minds and machines, such as in the case of chess. Second, 
the task is too hard for the limited computational resources the average mind has 
available. 

2. The task environment needs to be studied. The moral from SiMON's two-bladed 
scissors analogy is «that one must consider both the task environment and the limits 
upon the adaptive powers of the system» (SIMON, 1991, p. 36). 
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3. Limited cognitive resources. A person has to make an inference under limited time, 
limited knowledge, limited computational capacities, and limited resources for 
obtaining further information. These resources are insufficient to compute the exact 
solution. 

4. A satisficing strategy is specified. This condition requires some precisely formulated 
strategy, which is proposed as a model of bounded rationality. This satisficing 
strategy computes a judgment or decision from the analysis of the task environment. 

Do «heuristics and biases» satisfy these four general requirements? Consider first a 
concrete example, one of the most celebrated cognitive illusions: the «conjunction 
fallacy» in the Linda problem. Imagine you are a participant in an experiment; in front 
of you is a text problem and you begin to read (TVERSKY and KAHNEMAN, 1983): 

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. 
As a student, she was deeply concerned with issues of discrimination and social justice, 
and also participated in anti-nuclear demonstrations. 
Which is more probable: 
(a) Linda is a bank teller, 
(b) Linda is a bank teller and active in the feminist movement. 
Assume you chose (b), just as some 80-90% of the participants in previous experiments 
did. TVERSKY and KAHNEMAN (1983) argued that this judgment is a reasoning fallacy, 
because it violates the conjunction rule: 

p(AnB) < p(A), and p(AnB) < p(B). 

In words, the probability of the conjunction of two events A and B cannot be larger than 
the probability of either of the two events. This alleged demonstration of human 
irrationality has been widely accepted and publicized. STEPHEN J. GOULD (1992) puts 
the message clearly: «TVERSKY and KAHNEMAN argue, correctly I think, that our minds 
are not built (for whatever reason) to work by the rules of probability» (p. 469). The 
conjunction fallacy has been suggested as a cause of many human misfortunes and 
disasters, such as US security policy (KANWISHER, 1989) and people's assessment of the 
chance of nuclear reactor failures (STICH, 1985). Let us now see what this alleged 
demonstration of human irrationality has to do with bounded rationality. 
1. Is the task too hard? No. Different from chess and real-world situations, one does 

not even need a pocket calculator to compute (what is considered to be) the «correct» 
solution to the Linda problem. 

2. Is the task environment studied? No. No analysis of the situation is needed for the 
«correct» solution. One does not even need to read the description of Linda. 
TVERSKY and KAHNEMAN (1983) assume that all that matters for sound reasoning 
is to map the term «probable» into mathematical probability, and the term «and» 
into logical AND. That's all that is needed for the conjunction rule. The norm is 
content-blind, therefore the environment does not matter (GlGERENZER, 1996a). 
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Any knowledge, such as about bank tellers and feminists, is considered irrelevant 
for sound reasoning. As a consequence, the participants' assumptions about what 
the experimenter wants them to do are not analyzed either. 

3. Do limited cognitive resources apply? Limited cognitive resources are not an issue 
in the Linda problem. For finding the «correct» solution, absolutely no knowledge 
about the environment is needed and no resources for obtaining further information 
are required; thus the issue of limited knowledge does not apply. Similarly, little if 
any computational capacities are needed, and time constraints or information costs 
are of no relevance. 

4. Is a satisficing strategy specified? The standard explanation for the «conjunction 
fallacy» is that people do not reason according to the laws of probability, but use a 
heuristic called «representativeness:» the description of Linda is more representative 
of a feminist bank teller than of a bank teller. The term «representative» seems to 
mean «similar.» But which of the many different strategies for computing similarity 
is meant by this word? The strategy for computing representativeness has not yet 
been specified. 

I conclude that the conjunction fallacy and its proposed explanation, the repre­
sentativeness heuristic, satisfy none of these four general criteria of bounded rationality. 
This result holds more generally for the «heuristics and biases» in statistical and 
probabilistic reasoning (though occasionally one of the criteria may be satisfied). First, 
what is considered to be the «correct» solution can almost always be computed with a 
few keystrokes on a cheap calculator (overconfidence bias is one exception). Second, 
the norms are content-blind, therefore any analysis of the task environment is assumed 
to be unnecessary in the first place. Third, for the same reason - content-blind norms -
knowledge and information search play little if any role, and nor do limits of memory 
and attention. Fourth, none of the three heuristics proposed in the early 1970s -
representativeness, availability, and anchoring - has ever been turned into a precise 
model. They have remained one-word explanations with the virtue of Rorschach ink­
blots. Every researcher can read into them what he or she wishes. The reluctance to 
specify precise and falsifiable process models, to clarify the antecedent conditions that 
elicit various heuristics, and to work out the relationship between heuristics has been 
repeatedly pointed out (e.g., EINHORN and HOGARTH, 1981; LOPES, 1991; SHANTEAU, 

1989; WALLSTEN, 1983). However, KAHNEMAN and TVERSKY (1996, p. 585) still 
continued to defend undefined «heuristics» in reaction to critique (see GlGERENZER, 
1993; 1994; 1996a). Thus, by all four criteria, the heuristics-and-biases program has little 
to do with models of bounded rationality. 

However, one could argue that at least the first criterion holds in its weak version, 
which says that the solution is incalculable for the average person. Even if the task does 
not look difficult, it is so for human minds, so the argument goes. And this result allegedly 
holds fairly stable across variations, as we learn from CAMERER (1995). But this picture 
is misleading; it ignores the recent demonstrations of how to make the conjunction fallacy 
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largely disappear (FIEDLER, 1988; GlGERENZER, 1991; HERTWIG and GlGERENZER, 
1996). Consider the simple fact that the term «probable,» attached to a single event (such 
as that Linda is a bank teller), has several legitimate meanings besides mathematical 
probability. Some examples are «plausible», «credible» as in «a credible story», and 
«that may in view of present evidence be reasonably expected to happen,» (see e.g., the 
Oxford English Dictionary). Similarly, statisticians of the frequentist school would not 
accept that single-event «probabilities» as in the Linda problem have anything to do with 
the mathematical theory of probability (GlGERENZER, 1994). Thus, for both psychologi­
cal and statistical reasons, an adequate test of the human capacity to reason according to 
the conjunction rule is to state the problem in frequencies rather than in ambiguous 
single-event probabilities. RALPH HERTWIG and I have formulated the Linda problem in 
terms of frequencies (HERTWIG and GlGERENZER, 1996). Everything was left constant 
except that we replaced the ambiguous phrase «Which is more probable?» by a frequency 
judgment: «There are 100 women like Linda. How many of them are (a) bank tellers, 
(b) bank tellers and active in the feminist movement?» In a series of experiments, 
conjunction violations dropped from almost 90% in the original probability version to 
as low as 0% in the frequency version. FIEDLER (1988) had earlier shown similar results: 
violations of the conjunction rule dropped from 80% to 90% in probability judgments 
to about 20% in frequency judgments.1 Thus, the task is not, too hard for most people, 
once it is clarified that it is about mathematical probability and not about something else.2 

The conjunction fallacy is not the only so-called cognitive illusion that largely 
disappears when probabilities are replaced by frequencies. GlGERENZER, HOFFRAGE and 
KLEINBÖLTING (1991) showed that overconfidence bias completely disappeared when 

1. Note that TVERSKY and KAHNEMAN (1983) had reported an effect of frequency for a different problem, 
but did not pay much attention to it. 

2. The reason why most people chose to interpret «Which is more probable?» other than in terms of 
mathematical probability seems to be that the latter would imply that the description of Linda is irrelevant 
for the task, which in turn would imply that the experimenter violates GRICE'S (1975) conversational 
maxim of «relevance.» This conclusion is supported by the task analysis, experiments, and paraphrasing 
tasks reported in HERTWIG and GIGERENZER (1996). In other words, people's judgments reflect social 
rationality, not mental inability. In defense against my critique (e.g., GIGERENZER, 1991), KAHNEMAN 
and TVERSKY (1996) constructed a between-subjects design for the Linda problem, and claimed that at 
least in this special situation the conjunction fallacy is obtained even with frequency judgments. They 
asked one group «Suppose there are 1,000 women who fit this description. How many of them are (a) 
high school teachers? (b) bank tellers?» and a second group «How many of them are (a) high school 
teachers, and (c) bank tellers and active feminists» (p. 587). The estimate of (c) was higher than that of 
(b), which they took as a violation of the conjunction rule. Note that KAHNEMAN and TVERSKY (19%) 
had changed in this experiment the original conjunction «bank teller and active in the feminist 
movement» into «bank tellers and feminists,» that is, a noun-active/adjective to a noun-noun combina­
tion. They did not point out this change. HERTWIG (1997) has provided evidence that people actually 
tend to read the new formulation as a disjunction (rather than a conjunction), and that the «conjunction 
fallacy» in KAHNEMAN and TVERSKY'S (1996) between-subjects design disappeared when this mislead­
ing formulation is replaced by the original conjunction. The problem with KAHNEMAN and TVERSKY'S 
(1996) defense is the same as with their original analysis of the Linda problem: A content-blind norm 
is applied, and how people actually understand the task environment is not analyzed. 
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participants were asked «How many of the last 50 questions did you get correct?» instead 
of «What is the probability that your answer to this question is correct?» (see also 
M A Y , 1987; SNIEZEK and BUCKLEY, 1993). Lay persons' reasoning followed BAYES' 

rule about three times as often when the information was in a frequency format rather 
than in a probability format (COSMIDES and TOOBY, 1996; GlGERENZER and HOFFRAGE, 
1995). Physicians' diagnostic inferences followed BAYES' rule four times as often with 
frequency formats than with probabilities (GlGERENZER, 1996b; HOFFRAGE and 
GlGERENZER, 1996). TEIGEN (1974) reported that overestimation of probabilities (e.g., 
What is the probability that a randomly chosen female student at the University of Bergen 
is above 160 cm tall?) changed into more realistic estimates when subjects were given 
the opportunity to estimate frequencies (e.g., If we measure 500 female students, how 
many of them will be above 160 cm tall?). The difference between single events and 
repeated events also makes the «illusion of control» (LANGER, 1975) largely disappear 
(BUDESCU and BRUDERMAN, 1995; KOEHLER, GIBBS and HOGARTH, 1994), makes the 

certainty effect and the possibility effect (KAHNEMAN and TVERSKY, 1979) largely 
disappear (KEREN, 1991; KEREN and WAGENAAR, 1987, and reduces preference rever­

sals (WEDELL and BÖCKENHOLT, 1990). A review of the effects of frequency is in 
GlGERENZER (1991; 1994), and theoretical explanations in GlGERENZER and HOFFRAGE 
( 1995) and GlGERENZER et al. ( 1991 ). For a different view see KAHNEMAN and TVERSKY 
(1996), and for my response, GlGERENZER (1996a). 

«Cognitive illusions» have been presented in the last three decades as hard facts 
similar to «visual illusions» - stubborn, largely ineradicable, genuine illusions, to which 
laymen and experts fall prey. The fact that one-and-the-same factor, frequencies versus 
probabilities, can make such a broad spectrum of alleged cognitive illusions largely 
disappear suggests that the tasks are not too hard, and the fault is not simply in the human 
mind. These results should not be read to imply that frequency judgments are always 
correct. There exist theories of cognitive processes that predict when they are and when 
not (GIGERENZER et al., 1991 ; GIGERENZER and HOFFRAGE, 1995). But it should be clear 

that the single most trenchant conclusion reached by the heuristics-and-biases program, 
namely that people are all too bad at reasoning, is itself, to a large degree, an illusion 
fostered by all-too-narrow norms of sound reasoning. 

To summarize: The study of bounded rationality has been recently associated with 
the search for biases, defined as systematic discrepancies from some rule of probability. 
I have stated four general requirements for bounded rationality and concluded that the 
heuristics-and-biases approach to human judgment has little to do with studying bounded 
rationality. The stock-in-trade biases tend to disappear largely when the problems are 
formulated in terms of frequencies rather than probabilities. 

The purpose of models of bounded rationality cannot be to explain deviations of 
human judgment from rules of probability. In the situations in which bounded rationality 
applies, the solution cannot be reduced to one of these rules. The purpose is to explain 
how people can do better than chance, that is, to explain deviations from random 
performance in the direction of successful performance. 
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2. MODELS OF SATISFICING INFERENCE 

How can a mind infer unknown properties of its environment on the basis of limited 
knowledge about that environment? How can these inferences be modeled, assuming the 
constraints of limited time and computational capacities? I will consider models of 
satisficing inference that embody, in addition to the general criteria listed above, the 
following specific criteria: 
- Step-by-step procedures 
- Limited search (simple stopping rules) 
- One-reason decision making (non-compensatory strategies) 
- Exploitation of a lack of knowledge (how to make positive use of one's ignorance) 
- Exploitation of structures of information (structures of environments) 

This paper deals with the following type of inference: Which of two objects scores higher 
on a criterion? This inference is a special case of the more general problem of infering 
which object in a class of M objects has the highest value on a criterion, but I will consider 
here only the case of M = 2. Examples are treatment allocation (e.g., which of two patients 
to treat first in the emergency room, with life expectancy after treatment as criterion), 
financial investment (e.g., which of two options to buy, with profit as criterion), and 
demographic predictions (e.g., which of two places has higher pollution, mortality rates, 
and so on). 

Figure 1 
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Figure 1 : Illustration of bounded search through limited knowledge. Objects a, b, and c are recognized, d is 
not. Predictor values are positive (+) or negative (-); missing knowledge is shown by a question mark. Predictors 
are ordered by their validities. To infer whether a > b, the Take The Best algorithm looks up only the values 
in the striped space. To infer whether b > c, search is bounded to the dotted space. The other predictor values 
are not looked up (GIGERENZER and GOLDSTEIN, 1996). 
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Take The Best 

Take The Best is a satisficing algorithm designed for problems of this kind, that is, for 
situations in which fast inferences have to be made about which of two objects (patients, 
alternatives) scores higher on some criterion (GlGERENZER and GOLDSTEIN, 1996). The 
general situation is illustrated in Figure 1. There are N objects (a, è, c,...) and a number 
of predictors that have binary values (the situation can be generalized to continuous 
predictors, e.g., by dichotomizing). I explain the step-by-step algorithm of Take The Best 
with a demographic problem that we originally used to study its performance: Which of 
two cities has a larger population? Here, a and b are two German cities, say Bremen and 
Heidelberg. Examples of predictors that indicate higher population are soccer team 
(whether or not a city has a team in the major soccer league) and state capital (whether 
or not a city is a state capital). The predictors are ordered according to their (perceived) 
validity, with Predictor 1 at the top. The predictor values can be positive (a city has a 
soccer team, which indicates larger population), negative (has no soccer team), or 
unknown (the person has no information). The task is to infer which city, a or b, has a 
larger population. In addition to these ecological predictors, there is a subjective cue, 
recognition (whether or not the person has heard of the city). Recognition only plays a 
role when it is correlated with the criterion, as it is with population. 
Step-by-step procedure. Take The Best looks up in memory, step-by-step, information 
concerning predictors, until a predictor is found that discriminates. Discrimination 
occurs when one object has a positive value and the other has no positive value (negative 
or unknown). How does Take The Best infer which of two cities, Bremen (a) and 
Heidelberg (b), has the larger population, given the limited knowledge in Figure 1 ? First, 
the recognition values are looked up, which in this case do not discriminate, because 
both are positive. Next, the values on the top-ranking ecological predictor, the soccer-
team cue (Predictor 1) are searched. Bremen has a soccer team in the major league, but 
Heidelberg does not. Search in memory is terminated, and the inference is made that 
Bremen has the larger population. No other predictor values are looked up in memory. 
Thus, only 4 out of 12 values in Figure 1 (striped area) are looked up. None are integrated. 
Consider now the inference, which of b and c has a higher population. The values for 
recognition and Predictor 1 do not discriminate, but those of Predictor 2 do. Thus 6 values 
are looked up (dotted area in Figure 1 ) before search is terminated and the inference is 
made that b has the higher population. Finally, consider the inference, which of c and d 
is larger? Object c is recognized, d is not; that's it. The inference is made that c has the 
larger population. The Take The Best algorithm is shown in the form of a flow chart in 
Figure 2. 

Limited search. Take The Best operates by limited search with an explicit stopping 
(discrimination) rule. Its motto is «take the best, ignore the rest.» In contrast, «rational» 
inference, as traditionally conceived, needs to look up all available information. Take 
Figure 2 
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Guess 
Choose the alternative 
to which the cue points 

Yes 

Figure 2: Flow diagram of the Take The Best algorithm (GIGERENZER and GOLDSTEIN, 1996). 

The Best violates this tenet of classical rationality. The stopping rule makes the algorithm 
fast (search is quickly terminated) and frugal (only a few predictor values are used for 
the inference). 

One-reason decision making. The inference is made by one predictor only; there is 
no integration and compensation of predictors. Take The Best is non-compensatory. For 
instance, the positive values of object b in Predictors 2 and 3 (Figure 1) cannot reverse 
the decision made solely on the basis of the higher ranking Predictor 1. In contrast, 
«rational» inference, as traditionally conceived, integrates all available information in 
some optimal way. Take The Best violates this maxim. One-reason decision making 
makes the algorithm computationally simple, if computation is sequential. 

Exploitation of a lack of knowledge. Take The Best operates with the recognition 
principle: If one of the two alternatives is recognized, and the other not, then choose the 
recognized object. Note that this principle is non-compensatory. For instance, the three 
negative predictor values of object c do not reverse the inference that c is larger than d 
(Figure 1). The recognition principle can only be used when a person has a lack of 
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knowledge (i.e., does not recognize one of the alternatives) and exploits this lack in 
environments where recognition is not random but correlated with the criterion. The 
recognition principle is the most frugal satisficing principle, because it feeds on a lack 
of knowledge rather than just limited knowledge. Its surprising power can lead to the 
counterintuitive less-is-more effect, that is, that inferences based on less knowledge can 
be systematically better than inferences based on more knowledge. The structures of 
environments in which less-is-more effects occur are described in GOLDSTEIN and 
GIGERENZER (1997). 

Exploitation of structures of information (environments). The recognition principle 
can exploit certain structures of information (recognition correlated with the criterion). 
Similarly, Take The Best can exploit certain structures of information, such as exponen­
tially decreasing weights of binary predictors (see below), which allows high levels of 
accuracy (MARTIGNON, HOFFRAGE and KRIEGESKORTE, 1997). 

A Competition 

Although Take The Best seems to reflect what people actually do in many situations 
under constraints of limited time and knowledge, its simplicity raises the suspicion that 
it will dismally fail when making inferences about unknown features of real environ­
ments. For instance, when KEENEY and RAIFFA (1993) discussed the lexicographic 
ordering procedure - a procedure related to Take The Best - they concluded that this 
procedure «is naively simple» and «will rarely pass a test of <reasonableness>» (p. 78). 
How could an inference based on only one predictor compete with one based on an 
integration of all information available? In order to test how accurate Take The Best is, 
DANIEL GOLDSTEIN and I set up a competition between Take The Best and five linear 
integration algorithms, including multiple regression (GlGERENZER and GOLDSTEIN, 
1996). The task was to infer which of two cities has the larger population, as described 
above, for all German cities with more than 100,000 inhabitants (83 cities) with nine 
ecological predictors. In order to simulate limited knowledge, we created millions of 
hypothetical subjects, each of whom had a different amount of knowledge, by replacing 
actual predictor values with unknown values. For each of these subjects, the proportion 
of correct inferences (whether Heidelberg is really larger than Bonn) in all possible tests 
(83 x 82/2 pairs of cities) was determined using Take The Best. Similarly, the proportion 
of correct inferences was determined using each of the five linear integration algorithms. 
Competitors such as multiple regression computed inferences with the beta weights. The 
linear algorithms always based each inference on all information (predictor values), 
whereas Take The Best used, on the average, only less than one third of this information. 
The counterintuitive result was that Take The Best matched every one of the competing 
algorithms in accuracy, including multiple regression, and performed better than some 
(GIGERENZER and GOLDSTEIN, 1996). Figure 3 illustrates this result for the special case 
in which every algorithm performs best, that is, when the simulated persons have 
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complete knowledge of predictor values for each city they recognize. Limited recogni­
tion is shown on the x-axis, from 0 to all cities recognized. 
Note that the performance exhibits a less-is-more effect. For instance, the simulated 
person who recognizes all cities and has complete information about all values of 83 
cities in 9 predictors (at the very right of Figure 3) would make more accurate inferences 
if she had less complete information, such as information about the values of only 60 
cities. The reason is the power of the recognition principle (which can no longer be 
applied when all objects are recognized), which is explicit in Take The Best and implicit 
in some of the linear algorithms (GlGERENZER and GOLDSTEIN, 1996). 

This result is an existence proof that fast and frugal inference can be as accurate as 
computationally expensive algorithms that use more knowledge and time. But does this 
result generalize to other situations, or is there something peculiar with the population 
demographics of German cities? What is the structure of information in natural environ­
ments that Take The Best can exploit, and when would it fail? How do variants of Take 
The Best that are faster and more frugal perform? 

Figure 3 
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Figure 3: Results of the competition between Take The Best and five linear algorithms. The x-axis shows 84 
types of simulated subjects who recognize between 0 and 83 (i.e., all) cities. Tallying counts the number of 
positive predictor values; weighted tallying weights these values with the validities of each predictor; the 
unit-weight linear model computes the sum of positive values minus the sum of negative values; the weighted 
linear model weights these values with the validities of each predictor; and the multiple regression model 
computes the beta weights. For details of the simulation see GIGERENZER and GOLDSTEIN (1996). Copyright 
1996 by APA. 



212 GERD GIGERENZER 

Does the Performance of Take The Best Generalize to Other Environments? 

We have simulated the performance of Take The Best in eight task environments, and 
compared it to the most powerful linear competitor, multiple regression (CZERLINSKI, 
GOLDSTEIN, and GIGERENZER, 1997). The tasks included predicting the mortality rates 
in 20 Los Angeles districts from 15 indicators of pollution and demographic information; 
dropout rates in 57 Chicago high schools based on 18 indicators such as the average 
salary of the teachers and the proportion of white students; and attractiveness ratings of 
prominent men and women, based on three cues. These competitions were performed 
for the case of complete knowledge, that is, where the recognition principle (which 
exploits a lack of knowledge) could not help Take The Best. In four of the eight 
environments, the proportion of accurate inferences was the same for multiple regression 
and Take The Best, in two others multiple regression performed slightly better (1 or 2 
percentage points), and in only two environments there was a clear advantage of multiple 
regression (6 and 9 percentage points). The total proportions of correct inferences ranged 
between 65% and 84%. Thus, the striking performance of Take The Best did generalize. 
Equally important, there were systematic differences that provide clues for under­
standing why and when Take The Best performs so well. 

What Structures of Environments Allow Take The Best to Perform So Well? 

MARTIGNON et al. (1997) have proven conditions under which Take The Best can and 
cannot be outperformed by a weighted linear model (with predictor-criterion correlations 
as weights). I summarize here the gist of their proofs. In environments with abundant 
information (i.e., where the number of cues is very large compared to log.TV, where N 
is the number of objects), weighted linear models perform better. Consistent with this 
proof, the two environments in which multiple regression had a clear edge in perform­
ance in the simulations were those where the number of predictors was large relative to 
the number of objects (such as 15 cues for 20 objects). In environments with scarce 
information (where the number of cues is small relative to the number of objects, defined 
as less than or equal than log.TV), Take The Best performs better on average. Finally, 
when the weights of binary predictors are exponentially decreasing, such as 1/2,1/4,1/8, 
and therefore are non-compensatory, no weighted linear model, including multiple 
regression, can outperform the faster and more frugal Take The Best. 

In many situations humans must make inferences on the basis of scarce information. 
Environments with strictly non-compensatory cue weights are also not uncommon. For 
instance, in a study about people's reactions to their experience with police officers and 
judges, TYLER (1997, Figure 2) reported the beta weights of three predictors (fairness of 
the procedure, fairness of the outcome, and favorability of the outcome) for each of three 
criteria: people's respect of the law, their evaluation of the legal authority involved, and 
their personal feelings following the experience. For the first two criteria, the sets of beta 
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weights were strictly non-compensatory, and for the third, approximately so. Among the 
eight data sets that CZERLINSKI et al. (1997) analyzed there were three with strictly 
non-compensatory weights. Scarce information as well as non-compensatory informa­
tion is where Take The Best flourishes. 

Can Satisficing Inferences Get by with Even Less Knowledge? 

Take The Best uses information about the rank order of the validity of the predictors (as 
opposed to weighted linear models which use information about the quantitative validi­
ties of predictors). Assume that this rank order is not known, only the direction into which 
each of the predictors points (whether a predictor signals a higher or a lower value on 
the criterion). Two variants of Take The Best operate with this reduced information. 
They differ from Take The Best only in which predictors they look up first. «Take The 
Last» tries first the predictor that discriminated the last time; if it does not discriminate, 
then the predictor that worked the next to last time is examined, and so on. Take The 
Last works by a well-known psychological principle, the «Einstellung effect» (LUCHINS 
and LUCHINS, 1994) of Gestalt psychology. By contrast, the «Minimalist» just tries 
predictors in random order. Neither of these two algorithms needs information about 
which predictors are better than others. How accurate are: the inferences that these 
satisficing algorithms draw? For population sizes, GlGERENZER and GOLDSTEIN (1996) 
showed that the accuracy of these two algorithms was, on average, only about 1 
percentage point less than that of Take The Best, and still higher than some of the linear 
models. Each of them stopped earlier than Take The Best, that is, searched for less 
information. The performance of these two satisficing algorithms was striking. 

Take The Best is a member of a larger family, the PMM («Probabilistic Mental 
Models») family of satisficing algorithms (GlGERENZER, 1994; GlGERENZER et al., 
1991). The closest relatives to Take The Best (but not to Take The Last and the 
Minimalist, which do not order predictors according to their validity) are lexicographic 
strategies and the classification and regression tree (CART) models (BREIMAN et al., 
1993). Different from lexicographic strategies, however, Take The Best does not produce 
systematic intransitive inferences. 

3. SUMMING UP 

When a person makes inferences about unknown states of the world under constraints 
of limited knowledge and time, she is typically not in a position to calculate the optimal 
solution, even if such a solution is attainable. Take The Best and its variants are fast and 
frugal algorithms that can draw inferences with a minimum of knowledge and compu­
tational effort. These algorithms are based on simple psychologically plausible princi­
ples. They violate two classical tenets of rationality: They do not look up all available 
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information and they use one-reason decision making. Nevertheless, Take The Best can 
be as accurate as weighted linear models, and we can specify the structure of environ­
ments in which these satisficing algorithms do well. Models of bounded inference do 
not necessarily have to forsake accuracy for simplicity, nor rationality for psychological 
plausibility - the mind can have it both ways. 

REFERENCES 

BREIMAN, L., J.H. FRIEDMAN, R.A. OLSHEN, and C.J. STONE (1993), Classification and 
regression trees. New York: Chapman and Hall. 

BUDESCU, D.V. and M. BRUDERMAN (1995), The relationship between the illusion of 
control and the desirability bias. Journal of Behavioral Decision Making 8, 
pp. 109-125. 

CAMERER, C. (1995), Individual decision making, in: J.H. Kagel and A.E. Roth (eds.), 
Handbook of experimental economics. Princeton, NJ: Princeton University Press, 
pp, 587-703. 

COSMIDES, L., and J. TOOBY (1996), Are humans good intuitive statisticians after all? 
Rethinking some conclusions from the literature on judgment under uncertainty. 
Cognition 58, pp. 1-73. 

CZERLINSKI, J., D. GOLDSTEIN, and G. GIGERENZER (1997), Information environments 
and algorithms that exploit them. Manuscript, Munich: Max Planck Institute for 
Psychological Research. 

EINHORN, HJ., and R.M. HOGARTH (1981), Behavioral decision theory: Processes of 
judgment and choice. Annual Review of Psychology 32, pp. 53-88. 

FIEDLER, K. (1988), The dependence of the conjunction fallacy on subtle linguistic 
factors. Psychological Research 50, pp. 123-129. 

GIGERENZER, G. (1991), How to make cognitive illusions disappear: Beyond «heuristics 
and biases». European Review of Social Psychology 2, pp. 83-115. 

GlGERENZER, G. (1993), The bounded rationality of probabilistic mental models, in: K.I. 
Manktelow, and D.E. Over (eds.), Rationality. Psychological and philosophical 
perspectives. London: Routledge, pp. 284-313. 

GIGERENZER, G. (1994), Why the distinction between single-event probabilities and 
frequencies is relevant for psychology (and vice versa). In: G. Wright and P. Ayton 
(eds.), Subjective probability. New York: Wiley, pp. 129-161. 

GIGERENZER, G. (1996a), On narrow norms and vague heuristics: A reply to Kahneman 
and Tversky (1996). Psychological Review 103, pp. 592-596. 

GIGERENZER, G. (1996b), The psychology of good judgment: Frequency formats and 
simple algorithms. Journal of Medical Decision Making 16, pp. 273-280. 

GIGERENZER, G., and D.G. GOLDSTEIN (1996), Reasoning the fast and frugal way: 
Models of bounded rationality. Psychological Review 103, pp. 650-669. 



BOUNDED RATIONALITY: MODELS OF FAST AND FRUGAL INFERENCE 215 

GIGERENZER, G., and U. HOFFRAGE (1995), How to improve Bayesian reasoning without 
instruction: Frequency formats. Psychological Review 102, pp. 684-704. 

GIGERENZER, G„ U. HOFFRAGE, and H. KJLEINBÖLTING (1991), Probabilistic mental 
models: A Brunswikian theory of confidence. Psychological Review 98, pp. 506-528. 

GIGERENZER, G., and D.J. MURRAY (1987), Cognition as intuitive statistics. Hillsdale, 
NJ: Erlbaum. 

GOLDSTEIN, D.G., and G. GIGERENZER (1997), Recognition: How to exploit a lack of 
knowledge. Manuscript submitted for publication. 

GOULD, S.J. (1992), Bully for brontosaurus. Further reflections in natural history. 
Penguin books. 

GRICE, H.P. (1975), Logic and conversation. In: P. Cole and J.L. Morgan (eds.), Syntax 
and semantics 3: Speech acts. New York: Academic Press, pp. 41-58. 

HERTWIG, R. (1997), Judgement under uncertainty: Beyond probabilities. Manuscript 
submitted for publication. 

HERTWIG, R., and G. GIGERENZER (1996), The «conjunction fallacy» revisited: How 
intelligent inferences look like reasoning errors. Manuscript submitted for publica­
tion. 

HOFFRAGE, U., and G. GIGERENZER (1996), The impact of information representation 
on Bayesian reasoning, in: G. Cottrell (ed.), Proceedings of the Eighteenth Annual 
Conference of the Cognitive Science Society, Mahwah, NJ: Lawrence Erlbaum, 
pp. 126-130. 

KAHNEMAN, D., P. SLOVIC, and A. TVERSKY (eds.) ( 1982), Judgment under uncertainty: 
Heuristics and biases. Cambridge, England: Cambridge University Press. 

KAHNEMAN, D., and A. TVERSKY (1979), Prospect theory: An analysis of decision under 
risk. Econometrica 47, pp. 263-291. 

KAHNEMAN, D., and A. TVERSKY (1996), On the reality of cognitive illusions. Psycho­
logical Review 103, pp. 582-591. 

KANWISHER, N. (1989), Cognitive heuristics and American security policy. Journal of 
Conflict Resolution 33, pp. 652-675. 

KEENEY, R. L., and H. RAIFFA (1993), Decisions with multiple objectives. Cambridge: 
Cambridge University Press. 

KEREN, G. (1991), Additional tests of utility theory under unique and repeated condi­
tions. Journal of Behavioral Decision Making 4, pp. 297-304. 

KEREN, G., and W.A. WAGENAAR (1987), Violation of utility theory in unique and 
repeated gambles. Journal of Experimental Psychology: Learning, Memory and 
Cognition 13, pp. 387-391. 

KOEHLER, J.J., B.J. GIBBS, and R.M. HOGARTH (1994), Shattering the illusion of control: 
Multi-shot versus single-shot gambles. Journal of Behavioral Decision Making 7, 
pp. 183-192. 

LANGER, E.J. (1975), The illusion of control. Journal of Personality and Social Psychol­
ogy 32, pp.311-328. 

LOPES, L.L. (1991), The rhetoric of irrationality. Theory & Psychology 1, pp. 65-82. 



216 GERD GIGERENZER 

LOPES, L.L. (1992), Three misleading assumptions in the customary rhetoric of the bias 
literature. Theory and Psychology 2, pp. 231-236. 

LUCHINS, A.S., and E.H. LUCHINS (1994), The water jar experiments and Einstellung 
effects: I. Early history and surveys of textbook citations. Gestalt Theory 16, 
pp. 101-121. 

MARTIGNON, L., U. HOFFRAGE, and N. KRIEGESKORTE (1997), Lexicographic compari­
son under uncertainty: A satisficing algorithm. Manuscript, Munich: Max Planck 
Institute for Psychological Research. 

MAY, R.S. (1987), Realismus von Subjektiven Wahrscheinlichkeiten. Frankfurt/Main: 
Lang. 

OAKSFORD, M., and N. CHATER (1992), Bounded rationality in taking risks and drawing 
inferences. Theory <& Psychology 2, pp. 225-230. 

SHANTEAU, J. (1989), Cognitive heuristics and biases in behavioral auditing: Review, 
comments and observations. Accounting Organizations and Society 14, pp. 165-177. 

SIMON, H.A. (1955), A behavioral model of rational choice. Quarterly Journal of 
Economics 69, pp. 99-118. 

SIMON, H.A. (1979), Models of thought. New Haven: Yale University Press. 
SIMON, H.A. (1982), Models of bounded rationality. 2 vols. Cambridge, MA: MIT Press. 
SIMON, H.A. (1990), Invariants of human behavior. Annual Review of Psychology 41, 

pp. 1-19. 
SIMON, H.A. (1991), Cognitive architectures and rational analysis: Comment, in: 

K. Vanlehn (ed.), Architectures for intelligence. Hillsdale, NJ: Erlbaum, pp. 25-39. 
SIMON, H.A. (1992), Economics, bounded rationality, and the cognitive revolution. 

Aldershot Hants, England: Elgar. 
SNIEZEK, J.A., and T. BUCKLEY (1993), Decision errors made by individuals and groups, 

in: N.J. Castellan (ed.), Individual and group decision making. Hillsdale, NJ: 
Erlbaum. 

STICH, S.P. (1985), Could man be an irrational animal? Synthese 64, pp. 115-135. 
TEIGEN, K.H. (1974), Overestimation of subjective probabilities. Scandinavian Journal 

of Psychology 15, pp. 56-62. 
THALER, R.H. (1991), Quasi rational economics. New York: Rüssel Sage Foundation. 
TVERSKY, A., and D. KAHNEMAN (1983), Extensional versus intuitive reasoning: The 

conjunction fallacy in probability judgment. Psychological Review 90, pp. 293-315. 
TYLER, T.R. (1997), Procedural fairness and compliance with the law. Schweizerische 

Zeitschrift für Volkswirtschaft und Statistik, Vol. 133 (2/2). 
WALLSTEN, T.S. (1983), The theoretical status of judgmental heuristics, in: R.W. Scholz 

(ed.), Decision making under uncertainty. Amsterdam: Elsevier, pp. 21-39. 
WEDELL, D.H., and U. BOCKENHOLT (1990), Journal of Experimental Psychology: 

Human Perception and Performance 16, pp. 429-438. 



BOUNDED RATIONALITY: MODELS OF FAST AND FRUGAL INFERENCE 217 

SUMMMARY 

I specify general criteria for models of bounded rationality and discuss specific models 
for satisficing inference. The task of these fast and frugal algorithms is to infer unknown 
features of their environment under the constraints of limited knowledge, limited time, 
and limited computational capacities. These algorithms violate fundamental tenets of 
classical rationality: They neither look up nor integrate all information. I review the 
performance of the satisficing «Take The Best» algorithm. Despite its frugality, Take 
The Best can make as many correct inferences as computationally expensive weighted 
linear models that use and combine all available information. Accurate inferences need 
not follow the dictates of classical rationality. 

ZUSAMMENFASSUNG 

Ich formuliere allgemeine Kriterien für Modelle begrenzter Rationalität und diskutiere 
spezifische «satisficing» Modelle für Inferenz unter Unsicherheit. Die Aufgabe dieser 
schnellen und einfachen Algorithmen ist, unbekannte Eigenschaften der Umwelt zu 
erschliessen, und zwar mit begrenztem Wissen, begrenzter Zeit und begrenzter rechner­
ischer Kapazität. Diese Algorithmen verletzen fundamentale Annahmen klassischer 
Rationalität: Sie suchen weder alle verfügbare Information, noch integrieren sie Infor­
mation. Ich berichte über die Leistung des «Take The Best» Algorithmus. Trotz seiner 
Frugalität kann «Take The Best» genauso viele richtige Inferenzen machen wie rechner­
isch aufwendige gewichtete lineare Modelle, welche alle verfügbare Information ver­
wenden und kombinieren. Richtige Inferenzen müssen nicht den Regeln klassischer 
Rationalität folgen. 




